A Novel Anonymity Algorithm for Privacy Preserving in Publishing Multiple Sensitive Attributes
نویسنده
چکیده
Publishing the data with multiple sensitive attributes brings us greater challenge than publishing the data with single sensitive attribute in the area of privacy preserving. In this study, we propose a novel privacy preserving model based on k-anonymity called (α, β, k)-anonymity for databases. (α, β, k)anonymity can be used to protect data with multiple sensitive attributes in data publishing. Then, we set a hierarchy sensitive attribute rule to achieve (α, β, k)-anonymity model and develop the corresponding algorithm to anonymize the micro data by using generalization and hierarchy. We also design experiments to show the application and performance of the proposed algorithm.
منابع مشابه
A novel local search method for microaggregation
In this paper, we propose an effective microaggregation algorithm to produce a more useful protected data for publishing. Microaggregation is mapped to a clustering problem with known minimum and maximum group size constraints. In this scheme, the goal is to cluster n records into groups of at least k and at most 2k_1 records, such that the sum of the within-group squ...
متن کاملEnhanced P-Sensitive K-Anonymity Models for Privacy Preserving Data Publishing
Publishing data for analysis from a micro data table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the k-...
متن کامل(p+, α)-sensitive k-anonymity: A new enhanced privacy protection model
Publishing data for analysis from a microdata table containing sensitive attributes, while maintaining individual privacy, is a problem of increasing significance today. The k-anonymity model was proposed for privacy preserving data publication. While focusing on identity disclosure, k-anonymity model fails to protect attribute disclosure to some extent. Many efforts are made to enhance the kan...
متن کاملProtecting the Publishing Identity in Multiple Tuples
Current privacy preserving methods in data publishing always remove the individually identifying attribute first and then generalize the quasi-identifier attributes. They cannot take the individually identifying attribute into account. In fact, tuples will become vulnerable in the situation of multiple tuples per individual. In this paper, we analyze the individually identifying attribute in th...
متن کاملارایه یک روش جدید انتشار دادهها با حفظ محرمانگی با هدف بهبود دقّت طبقهبندی روی دادههای گمنام
Data collection and storage has been facilitated by the growth in electronic services, and has led to recording vast amounts of personal information in public and private organizations databases. These records often include sensitive personal information (such as income and diseases) and must be covered from others access. But in some cases, mining the data and extraction of knowledge from thes...
متن کامل